

AIMS OF ANAESTHESIA

Triad of anaesthesia

- Neuromuscular blocking agents for muscle relaxation
- Analgesics/regional anaesthesia for analgesia
- Anaesthetic agents to produce unconsciousness

Why unconscious patient require analgesia?

Overview

- Intravenous and inhalational anaesthetics
- Analgesics simple, opioids
- Muscle relaxants
- Decurarization

INTRAVENOUS ANAESTETICS

Stages of anaesthetics

- Induction putting asleep
- **Maintenance** keeping the patient asleep
- **Reversal** waking up the patient

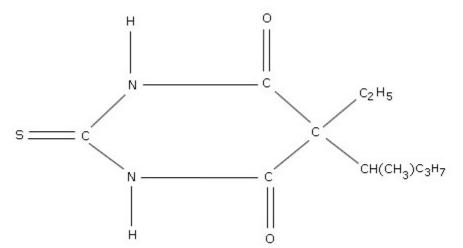
Intravenous anaesthetics

- Onset of anaesthesia within one arm brain circulation time – 30 sec
- Effect site \implies brain
 - Propofol
 - Thiopentale
 - Etomidate
 - Ketamine

General anaesthetic-how do they work

TASK – EXPLAIN

- 1. Loss of conscious awareness
- 2. Loss of response to noxious stimuli
- 3. Reversibility

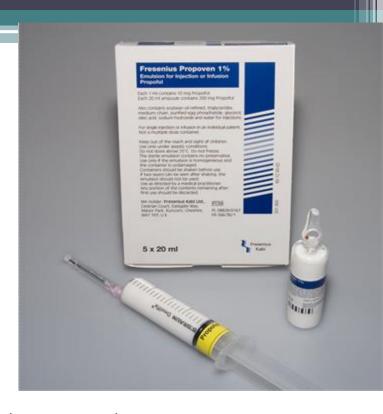

Anatomical site of action

- Brain: thalamus, cortex
- Spinal cord

Intravenous anaesthetics

Thiopentale

- Barbiturate
- **Dose** 3-7 mg/kg
- **Effects**: hypnosis, atiepileptic, antanalgesic
- Side effects
 - CVS: myocardiac depression, ↓CO
 - Reduction in MV, apnea

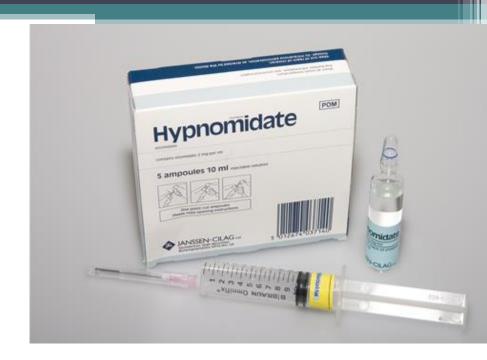

Intravenous anaesthetics

Thiopentale

- Problems with use
 - Extremely painfull and limbtreatening when given intra-arterially
 - Hypersensitivity reactions 1: 15 000
- Contraindications
 - Porphyria

Propofol

- Phenolic derivative
- **Dose** 1- 2.5 mg/kg
- Effects : hypnosis
- Side effects
 - CVS: myocardiac depression, ↓SVR, ↓CO
 - Respiratory depression
 - Hypersensitivity 1: 100 000


Propofol

- Other effects
 - Pain on induction
 - Nausea and vomiting less likely
 - Better for LMA placement then thiopentale
- Relative contraindications
 - Children under 3

Etomidate

- Ester
- **Dose** 0.3 mg/kg
- Effects: hypnosis
- Side effects
 - CVS: very little effect on HR, CO, SVR
 - Minimal respiratory depression

Intravenous anaesthetics

Etomidate

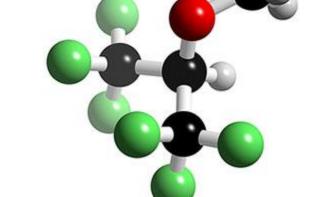
- Problems with use
 - Pain on injection
 - Nausea and vomiting
 - Adrenocortical suppression
 - Hypersensitivity reaction 1: 75 000
- Relative Contraindications
 - Porphyria

Ketamine

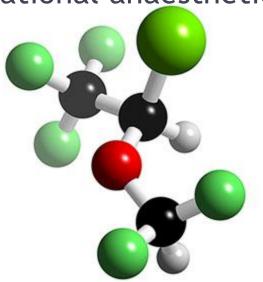
- Phencyclidine derivative
- CV effects THR, BP, CO, O2 consumption
- RS ↑ RR, preserved laryngeal reflexes
- CNS dissociative anaesthesia, analgesia, amnesia
- Use analgesic in Emerg. Med

Intravenous anaesthetics

Induction + maintenance


SUMMARY - IV anaesthetics

- Mechanism of action via receptors
- Used for anaesthesia and sedation
- Used for induction
- Propofol used for maintenance as well
- Thiopentale, propofol, etomidate
- All cause CV and respiratory depression


INHALATIONAL ANAESTETICS

Anaesthetic gases

- Isoflurane
- Sevoflurane
- Halothane
- Enflurane
- Desflurane

• N₂O – nitrous oxide

Anaesthetic gases

 Any agent that exists as a liquid at room temperature is a vapour

 Any agent that cannot be liquefied at room temperature is a gas

Anaesthetic 'gases' are administered via vaporizers

Potency

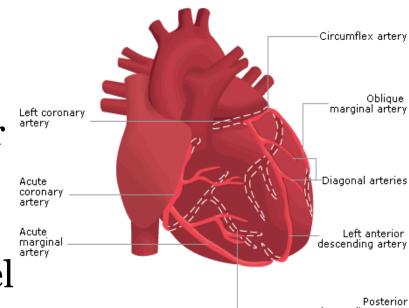
 MAC – that concentration required to prevent 50 % of patients moving when subjected to standart midline incision

Sevoflurane MAC 1.8 %

• Isoflurane MAC 1.17 %

Potency

 MAC – that concentration required to prevent 50 % of patients moving when subjected to standart midline incision


Sevoflurane MAC 1.8 %

• Isoflurane MAC 1.17 %

Respiratory and cardiovascular effects

- All volatile anaesthetics cause ↓ MV and ↑RR
- Isoflurane is irritant vapour
- ↓ SVR, blood pressure falls,
 ↑ HR
- Isoflurane ? Coronary steel

Metabolism and toxicity

- Isoflurane (0.2 %) and Sevoflurane (3.5%) are metabolized by liver
- F ions are produced -? Renal impairment
- Iso and Sevo trigger malignant hyperthermia
- N2O
 - Megaloblastic anaemia
 - Teratogenic
 - PONV

SUMMARY - inhalational anaesthetics

- Mechanism of action via receptors
- Used for induction (sevoflurane)
- And maintenance of anaesthesia
- Commonly used : Sevoflurane, Isoflurane
- Dose dependent CV and respiratory depression
- All, but N2O trigger malignant hyperthermia

NEUROMUSCULAR BLOCKING AGENTS

- Exclusively used in anaesthesia and intensive care
- Two classes
 - Depolarizing
 - succinylcholine
 - Non depolarizing
 - · Vecuronium aminosteroid
 - Atracurium benzylisoquinolinium

Use of NMBs

- Tracheal intubation
- Surgery where muscle relaxation is essential
- Mechanical ventilation

Mechanism of action

- Depolarizing
 - Structurally related to Ach
 - First activating muscle fibres, then preventing further response
- Non depolarizing
 - Compete with Ach at nicotinic receptor at the neuromuscular junction

Choice for tracheal intubation

Elective surgery	Emergency surgery
Standart induction	Rapid sequence induction
Non depolarizing agent	Succinylcholine

Intubating doses

Succinylcholine	1 – 2 mg/kg
Vecuronium	o.1 mg/kg
Atracurium	o.5 mg/kg

To maintain paralysis

Non depolarizing muscle relaxants

Succinylcholine	No
Vecuronium	0.02 – 0.03 mg/kg
Atracurium	0.1 – 0.2 mg/kg

Succinylcholine pharmacokinetics

- Duration of action: 3 5 min
- Metabolism plasma cholinesterase
 - Cave: suxamethonium apnea

$$\begin{bmatrix} \text{CH}_3 & \text{O} & \text{O} & \text{CH}_3 \\ | & | & | & | \\ \text{CH}_3\text{-N}^+\text{-CH}_2\text{CH}_2\text{O}\text{-C}\text{-C}\text{-CH}_2\text{CH}_2\text{-C}\text{-O}\text{-CH}_2\text{CH}_2\text{-N}^+\text{-CH}_3 \\ | & \text{CH}_3 & \text{CH}_3 \end{bmatrix}^2 \text{ CI}$$

Succinylcholine - adverse effects

- Bradycardia
- Muscle pain 'sux' pain
- Transient raised pressure in eye, stomach and cranium
- Raise in potassium

Succinylcholine - contraindications

- Patient related contraindications
 - Malignant hyperpyrexia
 - Anaphylaxis to SCh
 - Succinycholine apnea
- Clinical contraindications
 - Denervation injury
 - Penetrating eye injury

Non depolarizing muscle relaxants

- Choice of NMBs
 - Personal preference
 - Atracurium better in renal or hepatic failure
 - Avoid atracurium in asthmatic patients

Reversal

- Acetylcholine esterase inhibitor neostigmine
 - Increases concentration of Ach at NMJ
- Neostigmine acts at all sites where acetylcholine esterase is present including heart

What effect this might have and how this can be overcome?

Neostigmine

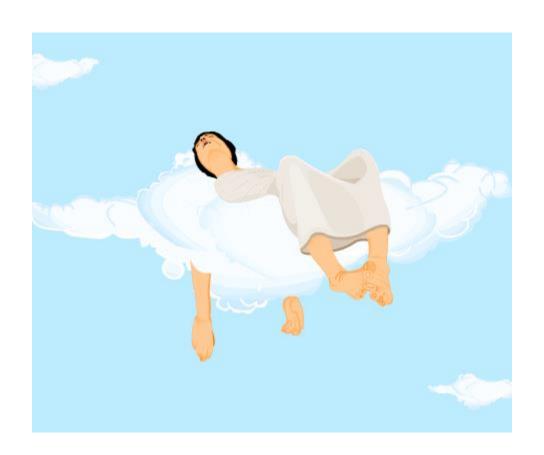
- Dose of neostigmine 0.05 mg/kg
- In > 50 kg man 2.5 mg
- Given with atropine 0.5 mg

Peripheral nerve stimulator

 Check the depth of neuromuscular blockade

 Determine that neuromuscular blockade is reversible

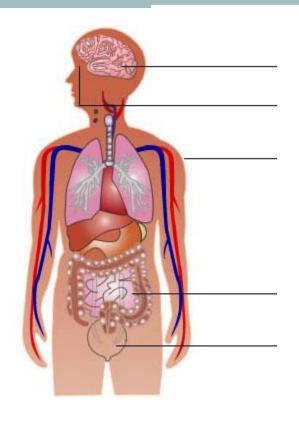
 Check that blockade has been reversed safisfactorily



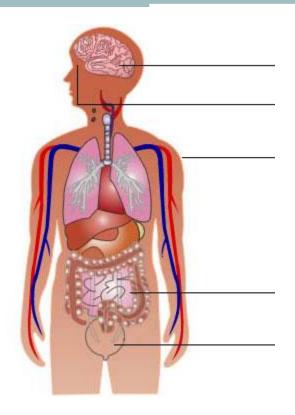
SUMMARY - muscle relaxants

- Mechanism of action via acetylcholine receptor
- Used to facilitate tracheal intubation, mechanical ventilation and surgery
- Depolarizing Succinylcholine
 - Lots of side effects
- Non depolarizing Vecuronium, Atracurium
 - Minimal CV and Resp. effects

ANALGESICS


Opiods

• MORPHEUS- GREAK GOD OF DREAMS


Opioids - effects

- Brain:
 - Analgesia, sedation
 - Respiratory depression
 - Euphoria and dysphoria
 - Addiction, tolerance
 - Nausea and vomiting
- Eyes
 - Meiosis
- Cardiovascular system
 - Hypotension, bradycardia

Opioids - effects

- Respiratory system
 - Anti tussive effect
- GI tract
 - spastic immobility
- Skin
 - Pruritus histamine release
- Bladder
 - Urinary retention

Opiods

Commonly used opioids

	Dose	Elimination 1/2 life	Metabolism	Comment
Sufentanyl	0.1 μg/kg	50 min	liver	Faster onset then fentanyl
Fentanyl	1-2 μg/kg	190 min	liver	Neurosurgery, patches
Alfentanyl	5 – 25 μg/kg	100 min	liver	Faster onset then sufentanyl
Remifentanyl	0.05 – 2 μg/kg	10 min	Plasma and tissue esterases	Infusion only, very short context sensit. ½ life

Opiods


Naloxone

- Pure opioid anatagonist at μ , δ and κ receptors
- Used in opioid overdose
- Dose : 1- 4 μg/kg
- Duration of action 30 40 min
- ! Often shorter then duration of action of opioid, need for repeated doses

SUMMARY

- Triad of anaesthesia
 - Analgesia
 - Anaesthesia
 - Muscle relaxation
- Choice depends on
 - Patient factors
 - Type of surgery
 - Whether the surgery is elective or emergency

Questions?

